python如何计算tf

在Python中,我们可以使用sklearn库中的TfidfVectorizer来计算TF(词频),以下是详细的步骤:

创新互联长期为数千家客户提供的网站建设服务,团队从业经验10年,关注不同地域、不同群体,并针对不同对象提供差异化的产品和服务;打造开放共赢平台,与合作伙伴共同营造健康的互联网生态环境。为勐腊企业提供专业的成都做网站、成都网站设计,勐腊网站改版等技术服务。拥有十多年丰富建站经验和众多成功案例,为您定制开发。

1、导入所需的库。

2、创建一个文本列表。

3、使用TfidfVectorizer计算TF。

4、打印结果。

代码如下:

导入所需的库
from sklearn.feature_extraction.text import TfidfVectorizer
创建一个文本列表
documents = [
    'This is the first document.',
    'This document is the second document.',
    'And this is the third one.',
    'Is this the first document?',
]
使用TfidfVectorizer计算TF
vectorizer = TfidfVectorizer()
X = vectorizer.fit_transform(documents)
打印结果
print("Feature Names: ", vectorizer.get_feature_names())
print("TFIDF Matrix: ")
print(X.toarray())

在这个例子中,我们首先创建了一个包含四个文档的列表,我们使用TfidfVectorizer来计算每个单词在每个文档中的TFIDF值,我们打印出所有的特征名(即所有的单词)和TFIDF矩阵。


网站标题:python如何计算tf
URL分享:http://gydahua.com/article/cdiphec.html
扫二维码与项目经理沟通

我们在微信上24小时期待你的声音

解答本文疑问/技术咨询/运营咨询/技术建议/互联网交流